Quantcast
Channel: Joshua Kunst – R-bloggers
Viewing all articles
Browse latest Browse all 16

Visualizing Sort Algorithms With ggplot

$
0
0

(This article was first published on Jkunst - R category , and kindly contributed to R-bloggers)

Have you read Visualizing Algorithms by Mike Bostock? It's a pure gold post.
In that post Mike show a static representation of a sort algorith and obvious it will fun to replicate that image
with ggplot. So here we go.
We need some sorts algorihms. In this link you can
see some algorithms.

We start with Insertion Sort:

insertion_sort_steps <- function(x  = sample(1:15)){

  msteps <- matrix(data = x, ncol = length(x))

  for (i in 2:length(x)) {

    j <- i

    while ((j > 1) && (x[j] < x[j - 1])) {

      temp <- x[j]
      x[j] <- x[j - 1]
      x[j - 1] <- temp
      j <- j - 1

      msteps <- rbind(msteps, as.vector(x))

    }
  }

  msteps

}

Now to test it and see what the function do:

set.seed(12345)

x <- sample(seq(4))

x
## [1] 3 4 2 1
msteps <- insertion_sort_steps(x)


as.data.frame(msteps)
V1 V2 V3 V4
3 4 2 1
3 2 4 1
2 3 4 1
2 3 1 4
2 1 3 4
1 2 3 4

Every row is a step in sort the algorithm (a partial sort). This matrix is a hard to plot so
we need a nicer structure. We can transform the matrix to a data_frame
with the information of every position of every element in each step.

sort_matix_to_df <- function(msteps){

  df <- as.data.frame(msteps, row.names = NULL)

  names(df) <- seq(ncol(msteps))

  df_steps <- df %>%
    tbl_df() %>% 
    mutate(step = seq(nrow(.))) %>% 
    gather(position, element, -step) %>%
    arrange(step)

  df_steps

}

And we apply this function to the previous steps matrix.

df_steps <- sort_matix_to_df(msteps)

head(df_steps, 10)
step position element
1 1 3
1 2 4
1 3 2
1 4 1
2 1 3
2 2 2
2 3 4
2 4 1
3 1 2
3 2 3

The next step will be plot the data frame.

plot_sort <- function(df_steps, size = 5, color.low = "#D1F0E1", color.high = "#524BB4"){

  ggplot(df_steps,
         aes(step, position, group = element, color = element, label = element)) +  
    geom_path(size = size, alpha = 1, lineend = "round") +
    scale_colour_gradient(low = color.low, high = color.high) +
    coord_flip() + 
    scale_x_reverse() + 
    theme(legend.position = "none")

}

Now compare this:

as.data.frame(msteps)
V1 V2 V3 V4
3 4 2 1
3 2 4 1
2 3 4 1
2 3 1 4
2 1 3 4
1 2 3 4

With:

plot_sort(df_steps, size = 6) + geom_text(color = "white", size = 4)

plot of chunk unnamed-chunk-7

It works, so we can now scroll!

sample(seq(70)) %>% 
  insertion_sort_steps() %>% 
  sort_matix_to_df() %>% 
  plot_sort(size = 2.2)

plot of chunk unnamed-chunk-8

Now try with other sort algorithms:

Bubble sort:

bubble_sort_steps <- function(x = sample(1:15)){

  msteps <- matrix(data = x, ncol = length(x))

  for (i in 1:(length(x) - 1)) {

    for (j in 1:(length(x) - 1)) {

      if (x[j] > x[j + 1]) {
        temp <- x[j]
        x[j] <- x[j + 1]
        x[j + 1] <- temp
      }

      msteps <- rbind(msteps, as.vector(x))

    }
  }

  msteps

}

Selection sort:

selection_sort_steps <- function(x = sample(1:15)){

  msteps <- matrix(data = x, ncol = length(x))

  for (i in 1:(length(x) - 1)) {

    smallsub <- i

    for (j in (i + 1):(length(x) - 0)) { # Is not '- 1' like website

      if (x[j] < x[smallsub]) {
        smallsub <- j
      }
    }

    temp <- x[i]
    x[i] <- x[smallsub]
    x[smallsub] <- temp

    msteps <- rbind(msteps, as.vector(x))

  }

  msteps

}

And test with a longer vector:

n <- 50
x <- sample(seq(n))

big_df <- rbind(
  x %>% selection_sort_steps() %>% sort_matix_to_df() %>% mutate(sort = "Selection Sort"),  
  x %>% insertion_sort_steps() %>% sort_matix_to_df() %>% mutate(sort = "Insertion Sort"),
  x %>% bubble_sort_steps() %>% sort_matix_to_df() %>% mutate(sort = "Bubble Sort")
)

head(big_df)
step position element sort
1 1 3 Selection Sort
1 2 31 Selection Sort
1 3 47 Selection Sort
1 4 49 Selection Sort
1 5 24 Selection Sort
1 6 7 Selection Sort
big_df %>%
  group_by(sort) %>% 
  summarise(steps = n())
sort steps
Bubble Sort 120100
Insertion Sort 30700
Selection Sort 2500
ggplot(big_df,
       aes(step, position, group = element, color = element, label = element)) +  
  geom_path(size = 0.8, alpha = 1, lineend = "round") +
  scale_colour_gradient(low = "#c21500", high = "#ffc500") + # http://uigradients.com/#Kyoto
  facet_wrap(~sort, scales = "free_x", ncol = 1) +
  theme(legend.position = "none",
        strip.background = element_rect(fill = "transparent", linetype = 0),
        strip.text = element_text(size = 8))

plot of chunk unnamed-chunk-13

Or we can plot vertical using the viridis package:

ggplot(big_df,
       aes(position, step, group = element, color = element, label = element)) +  
  geom_path(size = 1, alpha = 1, lineend = "round") +
  scale_colour_gradientn(colours = viridis_pal()(n)) +
  facet_wrap(~sort, scales = "free_y", nrow = 1) +
  scale_y_reverse() +
  theme(legend.position = "none",
        strip.background = element_rect(fill = "transparent", linetype = 0),
        strip.text = element_text(size = 8))

plot of chunk unnamed-chunk-14

And that's it. If you write/implement another sort algorithm in this way let me know to view it ;).

Some bonus content :D.

References:

  1. http://bost.ocks.org/mike/algorithms/
  2. http://faculty.cs.niu.edu/~hutchins/csci230/sorting.htm
  3. http://corte.si/posts/code/visualisingsorting/
  4. http://uigradients.com/#Kyoto
  5. http://algs4.cs.princeton.edu/21elementary/

To leave a comment for the author, please follow the link and comment on their blog: Jkunst - R category .

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio, Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression, PCA, time series, trading) and more...

Viewing all articles
Browse latest Browse all 16

Trending Articles